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Abstract
Designing an intelligent and autonomous system remains a great challenge in the assembly field. Most reinforcement learning
(RL) methods are applied to experiments with relatively small state spaces. However, the complicated situation and high-
dimensional spaces of the assembly environment cause traditional RL methods to behave poorly in terms of their efficiency
and accuracy. In this paper, a model-driven adaptive proximal proximity optimization (MAPPO) method was presented to make
the assembly system autonomously rectify the bolt posture error. In the MAPPOmethod, a probabilistic tree and adaptive reward
mechanism were used to improve the calculation efficiency and accuracy of the traditional PPO method. The size of the action
space was reduced by establishing a hierarchical logical relationship for each parameter with a probabilistic tree. Based on an
adaptive reward mechanism, the phenomenon that the algorithm easily falls into local minima could be improved. Finally, the
proposed method was verified based on the Unity simulation engine. The advancement and robustness of the proposed model
were also validated by comparing different cases in simulations and experiments. The results revealed that MAPPO has better
algorithm efficiency and accuracy compared with other state-of-the-art algorithms.

Keywords Model-driven method . Intelligent assembly . Probabilistic tree . Adaptive reward mechanism . Reinforcement
learning . Physical simulation engine

1 Introduction

With the advancements in machine learning theory, complex
tasks can be autonomously executed in many essential fields,
such as the automated detection of heart diseases or organ
cancer in medical clinics [1–3], the interpersonal influence
analysis in sociology [4] and quality inspection in engineering
[5]. Recently, researchers have proposed machine learning
theory in the continuous control task of machines to improve
the intelligent ability of machines based on accumulated

learning experiences, which makes the era of human intelli-
gence possible, especially in industry applications [6].
Gullapalli et al. [7] considered the impact of environmental
uncertainty on robot control and established a nonlinear neural
network structure to train a robot so that the robot could
choose different control modes according to environmental
changes. Yang et al. [8] proposed a progressive learningmeth-
od that aimed to stimulate robot learning impedance control
rules to effectively suppress control instability under high-
speed assembly conditions. Nuttin et al. [9] presented a learn-
ing controller that was capable of increasing the insertion
speed during consecutive peg-into-hole operations, without
increasing the contact force level. However, the above control
algorithms require a long training time and ample expert
knowledge to learn a new complicated assembly task.
Therefore, an advanced efficient learning algorithm without
requiring abundant expert knowledge needs to be applied in
the assembly process.

Reinforcement learning (RL) [10], one of the machine
learning methods, offers an effective way for the agent to
select and learn from a sequence of actions that maximizes
the accumulated reward over time without expert knowledge.
As an edging technique in continuous action decision-making,

* Jianfu Zhang
zhjf@tsinghua.edu.cn

1 Department of Mechanical Engineering, Tsinghua University,
Beijing 100084, China

2 State Key Laboratory of Tribology, and Beijing Key Lab of
Precision/Ultra-precision Manufacturing Equipment and Control,
Tsinghua University, Beijing 100084, China

3 Division of AdvancedManufacturing, Graduate School at Shenzhen,
Tsinghua University, Shenzhen 518055, China

4 School of Automation Science and Electrical Engineering, Beihang
University, Beijing 100191, China

https://doi.org/10.1007/s10489-020-01906-x

Published online: 13 November 2020

Applied Intelligence (2021) 51:3405–3420

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-020-01906-x&domain=pdf
http://orcid.org/0000-0001-6579-2190
mailto:zhjf@tsinghua.edu.cn


RL has been successfully applied in versatile domains to pro-
vide the learning ability of intelligent systems [11, 12]. In
automatic or intelligent assembly, robots are often utilized to
put a bolt into a bolt hole [13, 14]. However, due to the un-
certainty related to factors such as gaskets and materials, bolt
posture adjustment is a difficult and unsolved task in assem-
bly, which often results in lower assembly quality. Therefore,
the intelligent adjustment ability of assembly systems has be-
come a popular research topic. Xu et al. [15] proposed a
continuous-control-based deep deterministic policy gradient
(DDPG) algorithm to accomplish the assembly task through
the learned policy. Neural net-based RL was proposed in [16]
to assure the high precision of the motion in an assembly of
small components, which is applicable to a wide class of me-
chanical systems. A probabilistic-inference-based RL algo-
rithm (PILCO) was proposed to overcome the time-
consuming challenge in training the agent to learn from the
real environment, and it achieves an unprecedented speed of
learning compared with state-of-the art RL [17]. The constant
improvement of the RL algorithm and more efforts to com-
bine the RL algorithmwith complicated assembly problems in
real factories lay a solid foundation for the boost of global
intelligent assembly.

Proximal policy optimization (PPO) [18], a new family of
RL methods proposed in 2017, is much simpler to implement,
more general, and has better performance on a collection of
benchmark tasks than state-of-the-art RL methods such as
A2C [19] and ACER [20]. Considering the few applications
of PPO on assembly problems, executing PPO in real appli-
cations may achieve better performance than previous RL
methods. However, due to the complex situation and high-
dimensional space of the real assembly process, a PPO meth-
od with a random exploration learning policy could result in
two disadvantages:

1. Long time cost: In complicated assembly tasks, PPO re-
quires many robot executions to obtain high control pre-
cision [21], but it is costly to explore all the possible
action scenarios in a continuous and large search space.
Moreover, high dimensional space exponentially in-
creases the difficulty of space exploration. Building a hi-
erarchical structure to show interrelationships among each
action and state of space is an effective way to simplify the
complex space, but few relevant studies have been done in
the RL domain.

2. Low algorithm accuracy: The reward function of PPO
methods guides the agent in exploring and exploiting
the large search space [22]. However, it may be difficult
for the agents to converge or theymay easily fall into local
optimal values during the process of action exploration if
the reward function is not designed well. Some reward
forms, such as sparse rewards, hierarchical rewards and
linear rewards, are commonly applied in the RL method

[23–25], but these performances are unstable in different
applications. Therefore, it is challenging to select the best
function reward for a specific RL method.

To address the problems mentioned above, a model-driven
adapted proximal policy optimization (MAPPO) algorithm is
proposed in this paper. First, a probabilistic tree model was
established to reduce the dimensions of the exploration space
and accelerate the speed of the training process. Second, a new
adaptive reward function was designed to reduce the proba-
bility of the proposed algorithm being trapped in local subop-
timal values. Finally, a physical engine-based assembly sim-
ulation platform was established to verify the effectiveness of
the algorithm, and sufficient comparison experiments were
conducted to indicate the advancement and robustness of our
model. Specifically, the good performance of MAPPO with
the probabilistic tree method and the new adaptive reward
function were validated to compare them with the traditional
PPO method in assembly adjustment tasks. Moreover, a new
simulation situation was built, and more state-of-art RL
methods, such as DDPG [26], SAC [27] and TRPO [28], were
cited and applied to prove the leading role in RL methods and
generalization ability of our model in versatile situations.

The novelty and contribution of this paper is as follows:
Algorithm novelty: A model-driven adaptive PPO method

is proposed and proven to have better performance than the
traditional PPO method and other advanced RL methods
when executing dexterous assembly tasks such as bolt pose
adjustment.

Technical contribution: The model we propose provides
the assembly machine with the ability to autonomously make
decisions, which is more useful than manually preprograming
a robot, as our model can learn tasks from uncertain and com-
plicated situations in reality. Moreover, the unsolved and
high-level engineering assembly problem is detailed and
modelled in a mathematical way, and the intelligent model is
put into practice and solves the challenging problem in the
assembly field, proving the great contribution of our model
in the intelligent assembly domain. Therefore, an intelligent
assembly paradigm is provided in this paper.

2 Related works

This section explains the theoretical background that is the
basis for understanding the remainder of this paper.

2.1 Reinforcement learning

RL can be formulated as a Markov decision process (MDP),
which describes a sequential action decision problem requir-
ing the agent to select the sequence of actions that maximizes
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the accumulated reward over time. AnMDP can be defined as
quadruples M ¼ S;A; T ;Rð Þ, where,

& S ¼ S1; S2;⋯Snð Þ is an n-sized state space, and each
state {Si}1 ≤ i ≤ n represents one position in the dynamic
environment. In most practical problems, the state space
size is infinite.

& A ¼ A1;A2;⋯;Amð Þ is an m-sized action space and each
action {aj}1 ≤ j ≤m represents one action the agent executes.

& T : S �A � S→ 0; 1½ � is a transition matrix and T
S;A; S

0� �
represents the transition probability when taking

action A in state S to reach state S′. The transition proba-

bility can also be expressed as T S;A; S
0� �
¼ P S

0 jS;A
� �

.
The following equation is introduced in the MDP: p(s1 =
st + 1| s = st, a = at) = p(st + 1| s1s2,⋯, st)

& R : S � A� S→ℝ is a reward function and R(s, a) rep-
resents for the reward value the agent acquires when exe-
cuting an action A∈A in state S∈S.

A series of state-action pairs consists of the agent policy,
denoted by π. The agent policy represents a series of contin-
uous actions taken by an agent to achieve its goal. Policy π
can be denoted as Π = {(S1, A1), (S2, A2),⋯, (Sn, Am)}.

Given policy π, the accumulated reward expectation upon
executing action A in state S is called the action-state function,
which can be defined as:

Qπ S;Að Þ ¼ E ∑∞
t¼0γ

tR St;Atð ÞjSt ¼ S;At ¼ A
� �

where Qπ(S, A) is an action-state value function, E is an ex-
pectation operator, (St, At) is a random state-action pair pro-
duced by policy π, and γ ∈ [0, 1] is a discount factor, indicat-
ing the effect of future rewards on current agent behavior. γ =
1 means that the reward value of the future state has a great
influence on the action-state function, while γ = 0 means that
the reward value of the future state has little influence on the
action-state function.

The goal of an agent is to find the optimal sequence of
state-value pairs π∗ to obtain the maximum action-state func-
tion Qπ(S, A), and this process can be defined in formula (1).

π* ¼ argmaxπ∑s∈s∑A∈AQπ S;Að Þ ð1Þ

2.2 Proximal policy optimization algorithm

To obtain the optimal policy, PPO adopts the policy gradient
method to explore the solution. Figure 3 shows an execution
sequence π of the agent system. As the actions taken by the
agent system in different states may not be the same, a statis-
tical method is used to describe the agent’s actions. The prob-
ability of the execution sequence π can be represented by the
probability function, as shown in formula (2) (Fig. 1).

Pθ πð Þ ¼ P S1ð ÞPθ A1jS1ð ÞP S2jS1;A1ð ÞPθ A2jS2ð ÞP S3jS2;A2ð Þ⋯

¼ P S1ð Þ ∏
T

t¼1
Pθ AtjStð ÞP Stþ1jSt;Atð Þ

ð2Þ

where Pθ(At| St) is the probability function upon applying ac-
tion At in state St, and θ is the parameter of the function. The
Gaussian function is often adopted as a probability function to
perform the action selection task. P(Sr + 1| St, At) is the state
transition probability upon taking action At in state St leading
to state St + 1.

The accumulated reward of an agent if it adopts policy π
can be calculated in formula (3).

R πð Þ ¼ ∑T
t0¼tγ

t0−trt0 0 < γ < 1ð Þ ð3Þ

where rt′ is the reward value upon taking an action at time t′ γ
is a discount factor. The expected reward value of all the
policies can be expressed in formula (4).

Rθ ¼ ∑
π
R πð ÞPθ πð Þ ¼ Eτ∼Pθ πð Þ R πð Þ½ � ð4Þ

Next, the gradient boost method is used to adjust the prob-
ability function parameters θ. The gradient solution process is
shown in formula (5).

∇Rθ ¼ ∑
π
R πð Þ∇Pθ πð Þ ¼ ∑

π
R πð ÞPθ πð Þ ∇Pθ πð Þ

Pθ πð Þ

¼ ∑
π
R πð ÞPθ πð Þ∇logPθ πð Þ

¼ Eπ∼Pθ πð Þ R πð Þ∇logPθ πð Þ½ �≈ 1

N

� ∑
N

n¼1
R πnð Þ∇logPθ πnð Þ ð5Þ

In the above calculation process, N policy samples
are used to approximate the expectation value to solve
the infinite-time problem approximately. Where πn is
the n-th policy of the policy samples, and ∇ is a gradi-
ent symbol.

Then importance sampling is used to increase the training
speed and the expected reward value can be shown in formula
(6).

∇Rθ ¼ Eτ∼Pθ
0
τð Þ

Pθ τð Þ
Pθ0 τð Þ

R τð Þ∇logPθ τð Þ
" #

ð6Þ

where θ′ is a predesigned parameter of the probability function
based on experience.

According to formula (6), we can find that the gra-
dient value is always positive, so a baseline is used to
ensure that the gradient value can be negative (see for-
mula (7)).
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∇Rθ ¼ E st;atð Þ∼πθ0
Pθ atjstð Þ
Pθ0 atjstð Þ R τð Þ−E R τð Þð Þð Þ∇logPθ atjstð Þ
� �

ð7Þ

Using the following formula, we can convert the gradient
value into a likelihood function (see formula (8)).

∇ f xð Þ ¼ f xð Þ∇logf xð Þ ð8Þ

Combining formulas (7) and (8), the objective function is
calculated in formula (9).

J θ
0 ¼ E st ;atð Þ∼πθ0

Pθ atjstð Þ
Pθ0 atjstð Þ A

θ0 st; atð Þ
� �

Aθ0 st; atð Þ ¼ R τð Þ−E R τð Þð Þð Þ∇logPθ atjstð Þ
ð9Þ

To avoid the large difference between the two parameter
distributions, the PPO model adds a clipping term to the ob-
jective function. The final objective function is shown in for-
mula (10).

J θ
k

pp02 θð Þ≈∑ St ;Atð Þminmin
Pθ AtjStð Þ
Pθk AtjStð Þ A

θk st;at
� �

; clip
Pθ AtjStð Þ
Pθk AtjStð Þ ; 1−ε; 1þ ε

� �
Aθk st; atð Þ

� �

ð10Þ

where Pθ(At| St) is the state transition probability of the target
training environment, Pθk Atð jStÞ is the state transition proba-
bility of the new sampling environment, γ is the loss coeffi-
cient, and Rt is the reward value of the time step t.

3 Bolt posture adjustment problem
description

The quality of a bolt assembly has a great impact on the over-
all quality of the assembly, and the posture error of the bolt
during tightening is one of the main factors that affects the
quality of the bolt assembly. After the bolt is inserted into the
bolt hole, there will be a tilt or deviation in the spatial range of
the bolt posture due to interference from factors such as
washers and the bolt hole clearance. As shown in Fig. 2(a),
the bolts after loading are tilted due to the bolt hole clearance.
The dotted line o-o in Fig. 2 is the central axis of the bolt hole,
and line b-b is the central axis of the bolt shaft. The ideal bolt

position is where the o-o line coincides with the b-b line.
However, it can be seen from Fig. 2(b) that the solid line b-b
is heterogeneous in spatial geometry with the o-o line, so at
least two steps of translation and rotation are required to meet
the requirements of a qualified assembly, which increases the
auxiliary time for assembly. The state space of the bolt is
shown in formula (11).

S Boltð Þ ¼ sh; sp
� 	

¼ heterogeneous; parallelf g ð11Þ

where S represents the state space set of the bolts and sh and sp
represent the heterogeneous and parallel relationship between
the current bolt state and the target position state, respectively.

To improve the assembly efficiency, it is usually necessary
to fine tune the position of the tightening shaft to improve the
bolt’s pose tilt in the stage of screwing the shaft into the nut.
The principle of this fine-tuning process is as follows: when
the tightening shaft sleeve is screwed into the bolt nut head,
the bolt pose can be controlled by moving the tightening shaft.
Specifically, if the bolt is tilted, moving the tightening shaft
will provide a force on the bolt, and the connected workpiece
will also give a reaction force at the bolt shaft. As the two
forces are equal in magnitude, in opposite directions, and
not on the same line, a rotational torque is generated on the
bolt (as shown in Fig. 3(a)). If there is no tilt of the bolt,
moving the tightening shaft will cause the bolt to move

Fig. 1 Markov process of an agent system

(a) (b)

Fig. 2 Bolt pose geometric diagram. (a) Bolts with posture errors after
loading. (b) Schematic diagram of bolt posture correction
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horizontally, thereby achieving a fine translation adjustment
(as shown in Fig. 3(b)).

4 MAPPO algorithm

The PPO algorithm is displayed in section 2.2. However, the
PPOmodel has the following problems: 1. The amount of data
explored by the agent in the continuous action space is too
large, and the convergence speed is relatively slow; 2. The
existing reward function setting mechanism easily causes the
algorithm to fall into the local optimal solution and affects the
accuracy of the model. Therefore, based on the PPO model,
this paper proposes a probabilistic tree method and an adap-
tive reward mechanism method. Specifically, a probabilistic
tree method is proposed to reduce the size of the action space
by establishing a hierarchical relationship between the agent’s
action space and the state space based on experience. The
probabilistic tree method solves the problem of the slow con-
vergence speed of the current PPO algorithm. In addition, an
adaptive reward mechanism method is established to provide
agents with a heuristic guidance to explore the optimal strate-
gy. This reduces the chance that the current PPO algorithm
optimization process will easily fall into the local optimal
solution, which affects the accuracy of the model.

4.1 Probabilistic tree method

The traditional reinforcement learning model assumes that
the agent’s action space and state space are independent
of each other, that is, the actions generated by the agent
are not affected by the current state. However, in a dy-
namic environment, there is a strong coupling relationship
between the action space and state space. Specifically, an
agent will generally explore all the states and action
spaces to find an optimal policy, but some pre-
constraints and pre-knowledge in engineering are ignored.
For example, if the agent is staying in state A, it is better
to choose action B or C in the next step based on pre-
knowledge, but the RL model hardly understands this
coupling relationship and explores all the possible actions,
which makes the training process complicated. Therefore,
this section proposes a probabilistic tree method to de-
scribe the strong interaction between the action space
and state space based on experience and then establishes
a mathematical relationship between the two types of
spaces to reduce the agent’s exploration space and im-
prove the efficiency of the algorithm. The probabilistic
tree method is mainly divided into two steps. The first
step is to set up a hierarchical tree of the action space.
The second step is to build a neural network of the rela-
tionship between the action space and state space.

(a) (b)

Fig. 3 Bolt posture adjustment
method
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4.1.1 Hierarchical tree of the action space

The action space of the agent system is expressed as. A = {A1,
A2, A3,…, An}. An adjacency matrixB is created based on the
interrelationship between the elements in set A.

Atj = 0 means that the i-th action has no direct relationship
with the j-th action, and Atj = 1 means that the i-th action has a
direct relationship with the j-th action.

B ¼

A11 A12 L A1n

A21 A22 L A2n

M M O M
An1 An2 L Ann

2
664

3
775; AijjAij ¼ 0; 1
� 	

The adjacent matrix B is exponentially calculated to obtain
the reachable matrix C, where I is the identity matrix (see
formula (12))

C ¼ Bþ 1ð ÞM ;where Bþ 1ð ÞM ¼¼ Bþ 1ð Þ ð12Þ

The reachable set R(St) is set up to represent the
column number of the element whose i-th row in the
reachable matrix C is equal to 1, and a predecessor set
Q(Si) is established to represent the row number of the
element whose value is equal to 1 in the i-th column of
the reachable matrix C.

Traversing the entire action space, when i exists such
that R(Si) ∩ Q(Si) = R(Si), then At is used as the root
node of the hierarchical tree. Next, the sequence number
i is deleted from the sets R and Q to obtain a new set
R1, Q1. In addition, traversing is continued in the action
space, when the sequence number j exists such that
R1(Si)∩Q1(Si) = R1(Si), then Aj is a child node of the
existing node of the hierarchical tree. The above opera-
tion is repeated until all the action spaces are traversed,
that is, the hierarchical tree is generated.

The hierarchical tree can sort out the logical relationship
and hierarchical relationship between the elements of the ac-
tion space, reduce the complexity of the action space, and lay
the foundation for the establishment of the probabilistic tree.

4.1.2 Construction of the neural network

All the paths of the hierarchical tree from the root node to the
leaf node are collected to form set F, which is the simplified
action space. The number of paths in set F is the size of the
new action space. The relationship between the state space S
and the new action space F can be represented by building a
multilayer fully connected neural network. As shown in
Fig. 4.

The calculation relationship of the neural network at the l
layer can be expressed in formula (13).

xlj ¼ f ∑
dl−1

t¼1
xl−1t wl−1

if þ bl−1
 !

ð13Þ

where xlj represents the output value of the j-th neuron of the l-
th layer of the neural network, dl is the number of neurons of
the l-th layer, wl−1

ij is the weight vector between the l-th layer

neural network and the (l + 1)-th layer neural network, and bl −
1 is the threshold vector. Each action space element value
output by the neural network is the probability that the element
value occurs.

In summary, the relationship between the state space
and hierarchical action space can be simplified by a
probabilistic tree, which can simplify the number of
tuples in the action space. By referencing offline strate-
gy learning, the agent system can learn experience from
different environments and improve the learning effi-
ciency. However, the agent easily converges to a local
optimum, and this is inefficient for evaluating a strate-
gy. To increase the performance of the agent, this paper
starts by exploring the mechanism (that is, the design of
the reward function) for improvement.

4.2 Adaptive reward mechanism

Designing a reward function is one of the difficulties of
reinforcement learning algorithms. Inverse reinforcement
learning can realize the design of the reward function
by giving the machine an action paradigm and solving a
certain reward function to make the paradigm optimal.
However, this method requires the neural network to be
re-established, which increases the computational com-
plexity. At the same time, the neural network lacks the
ability to be combined with actual physical problems,
and the reward effect is low. Therefore, this paper pro-
poses a reward function design method based on adap-
tive shifting theory, which achieves better reward results
with less calculation cost.

For an agent in the process of reinforcement learning,
ideally, the agent will actively explore the action space
in a state with a large deviation from the target to re-
duce the chance of falling into the local minimum; how-
ever, when the agent moves closer to the target value,
the action of obtaining model convergence should not
be actively pursued. The specific mathematical model is
described in the following section.

4.2.1 State parameter normalization

The state space of the system is S = {S1, S2,…SH}. As the
parameter units of different physical meanings in state space
S are different, it is impossible to establish a mathematical
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relationship, so it is necessary to normalize the elements in S.
The normalization formula is shown in formula (14).

Snormi ¼ St
max Stð Þ; i ¼ 1; 2;…;H ð14Þ

where max(⋅) represents the upper limit of the value range of
St. Let the system’s target state be SG, then the total loss under
the current state of the system can be obtained by using the 2-
norm method (see formula (15)).

Loss ¼ ∥ Snorm−SG
� �

∥2 ð15Þ

4.2.2 Reward function based on the adaptive shifting theory

A trigonometric function is utilized to form the adaptive re-
ward function in this section (see formula (16)).

R Lossð Þ ¼ cos
π

2Lossmax
Loss−1; 0≤Loss≤Lossmaxð Þ ð16Þ

It can be seen from the function relationship that when
the loss value is large, the reward value function is a large
negative number, which is called the penalty value, and
the larger the total posture error is in this range, the
slower the change of the reward value function is. As a
result, the agent tries as many new actions as possible to
escape the high penalty. In contrast, if the agent keeps
stagnating, the cumulative penalty will be very large;
when the loss value is small, the reward function is a
small negative number. In this range, the smaller the loss
value is, the slower the growth rate of the reward func-
tion. Therefore, when the agent approaches the target
state, it tends to fine tune, reduces the choice of the
large-scale space, and prefers to make local small-scale
action selections.

After completing the design of the reward function, the
parameters of the neural network can be backpropagated using
the policy gradient theorem. The complete algorithm is shown
in Table 1.

5 Discussion: Adaptive adjustment of the bolt
pose

This section demonstrates the feasibility of the MAPPO algo-
rithm and the effectiveness of the probabilistic tree method
and adaptive reward strategy in a bolt pose adjustment simu-
lation model. A spatial coordinate system is constructed with
the bolt hole center axis as the z axis, as shown in Fig. 5. The
dotted line represents the central axis of the bolt. There are two
fine adjustment methods for the tightening shaft, correspond-
ing to two actions ax, ay. The bolt has two states of tilt and an
upright position.

For bolts with different postures, although the same tight-
ening shaft fine-tuning method is used, the actions generated
by the bolts are still different. We can see that the interior of
the action space of the bolt system is interrelated, so a hierar-
chical tree of action space A is established. The calculation
result of the hierarchical tree is shown in formula (17).

F ¼ ax→ My;Tx
� 	

; ay→ Mx; Ty
� 	� 	

ð17Þ

where ax represents the displacement of the tightening shaft in
the x direction, ay represents the displacement of the tighten-
ing shaft in the y direction,My represents the rotation angle of
the bolt along the y axis,Mx represents the rotation angle of the
bolt along the x axis, Tx represents the parallel displacement of
the bolt along the x axis, and Ty represents the parallel dis-
placement of the bolt along the y axis, as in Fig. 6.

The posture of the bolt shaft can be expressed by the rela-
tive position of the central axis of the bolt shaft with respect to
the central axis of the bolt hole. Due to the possibility of a
heterogeneous spatial relationship between the central axis of
the bolt shaft and the central axis of the bolt hole, it is difficult
to express the spatial angle in a three-dimensional coordinate
system, so the relative position relationship between the two
axes is described by the coordinate plane projection method.
As shown in Fig. 7. In addition, there are certain measurement
errors when the posture data of the bolt are acquired in both
the virtual and real assembly situations. In the simulation en-
vironment, the highest precision data type is double, which

Fig. 4 Neural network between
the state space and new action
space
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Table 1. Model-driven Adaptive Proximal Policy Optimization (MAPPO)
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can ensure an accurate calculation for 15 decimal. Therefore,
the error measurement of the simulation bolt can reach 1.0E-
15 for both the angle (°) and displacement (mm) measure-
ments. In a real assembly environment, the measurement ac-
curacy cannot be as high as the simulation accuracy. The
average vision measurement error is 0.1 mm for the

displacement and 0. 1∘ for the angle. To make the simulation
environment closer to the real environment, the precision of
the variable is constrained to 0.1.

The central axis of the bolt axis is projected to three coor-
dinate planes. For the inclined bolt central axis (that is, the
central axis is not parallel to the z axis), the central axis is
projected on the yz plane and xz plane, respectively, and the
resulting projection line and Z axis form an intersection angle
of θyz,θxz. The center point of the upper surface of the bolt head
is projected on the xy plane to form a point, and the distance
from this point to the x axis and y axis is Sy, Sx. For the central
axis that has a deviation in position but does not tilt at an angle
(that is, the central axis is parallel to the z axis), projecting the
central axis on the xy plane will form a point, and the distances
between the point and the x and y axes are Sy, Sx. Therefore,
the state space S of the tightening process can be expressed in
formula (18).

S ¼ θyz;θxz;Sy;Sx
� 	

ð18Þ

We can see that there is a coupling relationship between the
action space and state space in this model. Since the hierar-
chical tree F has been constructed, the transition probabilistic
formula of the hierarchical action space can be further refined
in formula (19).

Pθ AtjStð Þ ¼

Pθ ax;My
� �

; if θxz≠0∪Aupper ¼ ax
Pθ ax; Txð Þ; if θxz ¼ 0∪Aupper ¼ ax
Pθ ay;Mx
� �

; if θyz≠0∪Aupper ¼ ay
Pθ ay; Ty
� �

; if θyz ¼ 0∪Aupper ¼ ay

8>><
>>: ð19Þ

where Aupper represents the action space near the root node
layer. Taking the first item in formula (19) as an explanation,
if the state of θxz is not zero and the agent selects actionax in
the current step, then the sub-action My is more likely to be
executed in the bolt.

In summary, prior knowledge about the state can affect the
choice of action. To effectively describe the effect of the state
on the action choice, a state transfer neural network is
established to describe this relationship. The establishing pro-
cess of a neural network is shown in Fig. 8. This paper estab-
lishes a digital model of the bolt pose space in the tightening
system and uses visual equipment to extract the state space
vector S of the bolt system, where St represents the space
vector of the relative position relationship of the bolt pose at
time t.

As the relationship between the input and output data is not
complex, a 3-layer fully-connected neural network is con-
structed to build the probability tree. The number of neurons
in the input layer is the number of parameters in the state
space. The input data are the value of each parameter in the
state space. The number of neurons in the output layer is the
number of parameters in the action space. The output data are
the probability of each action parameter being selected.
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Fig. 5 Hierarchical tree of the bolt system

Fig. 6 Bolt system action space
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The training and validation data are collected from random
sampling based on prior knowledge in formula (19). In detail,
the training data are composed of the state vector set S = (Si|
Si = {θyz, θxz, Sy, Sx}, i = 1, 2,⋯, N), and the training labels
consist of the four actions A = {(ax,My), (ax, Tx), (ay,
Mx), (ay, Ty)}. A total of 4000 samples are collected for train-
ing, and 1000 samples are collected for validation. As it be-
longs to the classification problem, the loss function and acti-
vation function can be selected based on state-of-the-art
works. Therefore, cross-entropy is adopted as the loss function
of these neural networks. The activation function of the first
and second neural network layers is a rectified linear unit
(ReLU), and the last layer is a Softmax function.

The loss and accuracy of this neural network are shown in
Figs. 9 and 10. After 50 epochs, the performance of the neural
network is greatly improved, and the final classification accu-
racy is 70.9%. Compared with previous random exploration,
the probability tree based on prior knowledge would have a
70.9% probability to guide the agent to select a better action
and 29.1% probability to randomly explore the next action.

The adaptive reward mechanism is shown in Fig. 11:

5.1 State parameter normalization

The state space of the tightening system is S = {θyz,θxz,Sy,Sx,}.
There are two kinds of parameters in space: the angle and
displacement. The mathematical relationship cannot be
established because of the different units of the two.

Therefore, the parameters are normalized (see formula (20)).

θnormyz ¼ θyz
θmax

; θnormxz ¼ θxz
θmax

Snormy ¼ Sy
Smax

; Snormx ¼ Sx
Smax

ð20Þ

where θmax ¼ π
2, which represents the maximum angle be-

tween the bolt central axis and z axis; Smax represents the bolt
hole radius, that is, the maximum deviation of the bolt posture.
Based on the 2-norm method, the total error of bolt position
and attitude can be obtained (see formula (21))

Loss ¼ ∥ θnormyz ; θnormxz ; Snormy ; SnormX


 �
∥2 ð21Þ

5.2 Reward function design

To meet the refinement conditions of a large rate of explora-
tion for the bolt posture and a small rate of exploration when
the posture error is large, the adaptive reward function is de-
signed by using the properties of the trigonometric function,
which is shown in formula (22). The trend of the function
change is shown in Fig. 9.

R Lossð Þ ¼ cos
π

2Lossmax
Loss− 0≤Loss≤2ð Þ ð22Þ

Fig. 8 Neural network between state and action space

Fig. 7 Plane projection of the bolt central axis
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6 Experiment and verification

To validate the advantage of the proposed algorithm, a
tightening system action simulation platform is built
based on the Unity physics engine, where the Unity
software has a dynamic simulation function, which can
accurately simulate the dynamic behavior and interfer-
ence behavior of objects. The Python language is select-
ed to run the reinforcement learning algorithm. To es-
tablish the digital connection between Python and the
Unity platform, the communication interface is used to
implement the Unity platform mathematical model and
interact with Python software. The virtual model of the
tightening system established in this paper is shown in
Fig. 10. The system consists of support parts, a tighten-
ing system, a servo movement system, bolted connec-
tions, and vision equipment. Among them, the servo
movement system can control the tightening axis of
the tightening system to move in the x-y direction,
and the vision device located above the bolt connection
can capture the relative position of the bolt space. As
the proposed algorithm is model-driven, the agent will
take actions according to the current state, and the state

will be immediately perceived by vision equipment at
the next moment, increasing the correlation between
the simulation and the real world.

In the bolt posture adjustment simulation environments, the
number of neural network layers is 3, the maximum number of
steps is 5 million, and the loss coefficient λ is 0.99. In each
epoch, the initial inclination angle of the bolt θxz, θyz is selected
randomly in a small range under the boundary condition of the
bolt hole. The initial positions of the bolts Sx, Sy are randomly
determined in a small range and the initial position should not
exceed the bolt hole radius. At each time step, the position and
tilt angle of the bolt will be captured by the visual device.

6.1 Probabilistic tree method validation

The performance of the probabilistic tree method is evaluated
by comparing it with the traditional PPO algorithm. When the
probabilistic tree method is not used, the bolt system has a
total of 6 action spaces. As shown in Figs. 12, 13 and 14,
the agent using the probabilistic tree method can converge
faster and learn a better adjustment policy with fewer steps
for the loss trend of the bolt system learning process.

We can see that in Fig. 13, the convergence speed of the
optimal strategy is improved after we add the probability tree
method, and it can reach near the optimal strategy after
200,000 iterations, while the model without the probability
tree method needs more than 500,000 iterations to find the
optimal strategy. In Fig. 14, the length of the steps needed
for the improved model to find the optimal solution decreases,
while the traditional method does not have such a good con-
vergence performance. Therefore, we can conclude that the
probability tree method can improve the convergence speed
and reduce the training time.

Big penalty 

value

Small penalty 

value

Turning point

Fig. 11 Reward function of the bolt system

Fig. 10 The accuracy curve of the training process

Fig. 9 The loss curve of the training process
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6.2 Adaptive reward mechanism

To verify the superiority of the adaptive reward mechanism,
we first describe the traditional reward mechanism commonly
used by scholars, and then compare the proposed method with
the traditional reward function mechanism in three different
cases. The traditional reinforcement learning reward mecha-
nisms include:

1) Hierarchical reward method: Divide the action space into
multiple intervals and assign different reward values ac-
cording to the distance from the interval to the target;

2) Sparse reward method: Set reward values only at target
points;

3) Linear reward method: The reward assigned is linear with
the distance of the target.

The validation results are shown in Figs. 15 and 16.
It can be seen from Fig. 13 that after 500,000 iterations of

the algorithm, the trigonometric function reward method has
the lowest loss value and the most stable downward trend,
while the final value reward method and the linear reward
method have obvious downward effects, but the loss value
fluctuates greatly at the beginning of the iteration. It can be
seen from Fig. 14 that the cumulative reward values of the
trigonometric function reward method and final value reward
method are stable near 0, but the cumulative reward values of
the HRMmethod are in a large negative range, that is, they fall
into a local minimum and cannot extricate themselves.

In summary, the trigonometric function method has faster
convergence and more stable performance than the traditional
reward mechanism and does not easily to fall into the local
optimum.

(a) (b)

Fig. 12 Virtual model of the tightening system. (a) Tightening system in operation. (b) Picture from the perspective of the visual equipment

Fig. 13 Epochs length of the bolt system learning process
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6.3 State-of-the-art of MAPPO

To prove the robustness and generalization ability ofMAPPO,
the classic RL task pendulum proposed by OpenAI Gym is
adopted as the simulation platform, and three state-of-art RL
methods DDPG [26], SAC [27] and TRPO [28] are selected as
experimental comparison objects. The performance results of
MAPPO and other state-of-art RL methods are shown in
Figs. 17 and 18. In Fig. 17, the MAPPO and SAC methods
achieve better performance than the other methods in terms of
the learning effect, as the accumulated rewards of these
methods are higher than those of the other methods.

However, the training time of the SACmethod is much longer
than that of the other algorithms, which can be shown in
Fig. 18. It can be concluded that MAPPO is the state-of-the-
art method in terms of comprehensive performance.

7 Conclusion

Combined with the probabilistic tree and adaptive reward
mechanism, the proposed MAPPO algorithm can perform
well for the bolt posture adjustment. The state-of-the-art and
robust nature of this algorithm has been demonstrated through

Fig. 14 Performance curves for the adaptive reward system for epoch loss

Fig. 15 Performance curves for the adaptive reward system with epoch loss
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a Unity simulation model based on a physics engine. As the
digital model proposed in this article can accurately simulate
the mechanical state of the bolt in the bolt hole adjustment, the
results are convincing.

The probabilistic tree model mainly solves the problem of
algorithm complexity caused by the large and spatially
coupled parameters of the agent system action space. The
hierarchical relationship between the parameters of the action
space is established by a probabilistic tree, which simplifies
the complexity of the model.

The state-based adaptive reward mechanism reduces the
chance that the agent is prone to fall into the local minimum
when exploring the continuous action space.

In the proposed model, it is assumed that the initial bolt
posture changes randomly within a small range at each epi-
sode, but for engineering applications, the initial bolt posture
error emerges regularly. In the future, prior knowledge of the
bolt postures from a real bolt tightening systemwill be applied
to the proposed model to improve the application value of this
model.

Fig. 16 Performance curves for adaptive reward system for accumulated rewards

Fig. 17 Performance of the state-of-the-art methods for accumulated rewards
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