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a b s t r a c t

The intelligent fault diagnosis of video data has become a demanding task in industrial applications.
However, existing models require expensive computational cost and memory demand, which makes
this technology applied in factories impossible. To address this problem, a temporal–spatial attention-
based action recognition method (TARM) integrating TAB (temporal-attention-based frame splitting
model), SAB (spatial-attention-based agent focusing mode) and LSB (long-short term feature learning
mode) is proposed. TAB first extracts important frames from raw videos. Then, SAB refines video data
by reinforcing their essential features and weakening unnecessary features. Furthermore, LSB monitors
action type of video data by establishing recurrent convolutional architectures. Finally, the performance
of TARM in terms of training time and fault diagnosis accuracy are validated by comparing with six
state-of-the-art video diagnosis methods.

© 2021 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

With visual devices replacing human eyes as the main means
f monitoring, video diagnosis technology plays an essential role
n versatile domains, such as traffic regulation, security alert,
anufacturing supervision and so on. Video diagnosis is a 3D
ata processing technology that determines the type of object
ction by analyzing video data. Unlike image diagnosis methods,
ideo diagnosis technologies are becoming big difficulties and
hallenges in action diagnosis domain as video data, consisting
f countless frames with temporal features, place a greater de-
and on computing power and storage capacity of a computer.
ven so, since rich process information are included in video
ata, it makes the video diagnosis be closer to human diagnosis,
hus its decision-making results are more convincing than signal
iagnosis (1D data) or image diagnosis (2D data).
The video diagnosis technology is mainly divided into two

ub-steps, appearance recognition and motion estimation. The
ppearance recognition focuses on learning spatial feature of one
ingle frame, while the motion estimation focuses on learning
emporal variation feature of consecutive frames. As the motion
stimation method need to track the dynamic information from

∗ Corresponding author at: Beijing Key Lab of Precision/Ultra-precision Man-
facturing Equipments and Control, Department of Mechanical Engineering,
singhua University, Beijing, 100084, China.

E-mail address: zhjf@tsinghua.edu.cn (J. Zhang).
ttps://doi.org/10.1016/j.isatra.2021.06.041
019-0578/© 2021 ISA. Published by Elsevier Ltd. All rights reserved.
video data, it has become the core and challenging technology.
The optical flow method is a widespread and reliable method
to extract dynamic information from data [1,2], which uses the
mode motion speed in the time-varying image to represent the
mode motion information. Dense Trajectories (DT) method [3]
uses optical flow fields to obtain video sequence trajectories on
multiple spatial scales, after which it utilized the support vec-
tor machine method to achieve video classification. DT methods
obtained great performance on video action recognition before
the advent of deep learning methods and the Improved Dense
Trajectories (IDT) [4] increased the classification accuracy of the
DT method in the action recognition benchmarks UCF50 from
84.5% to 91.2%. However, the DT method and IDT method need
to calculate the optical flow field, which makes the calculation
process slow.

With the emergence and development of deep learning meth-
ods, an increasing number of scholars make contributions to
improving the classification accuracy in video diagnosis tasks.
The Two Stream Network method is the first application of deep
learning methods on video diagnosis technology, which used a
pair of parallel convolutional networks (ConvNets) to extract the
temporal and spatial features of the video data respectively and
fused the two-flow direction results to obtain the final classifi-
cation result. It is noted that the ConvNets used are 2D shallow
convolutional networks. To further enhance the classification ac-
curacy of video diagnosis technology, the deep convolutional neu-
ral network was used as the two-stream architecture of the Two
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tream Network, and the classification accuracy was increased to
2.5% [5] in the benchmark dataset UCF101.
The above-mentioned deep learning video diagnosis technol-

gy used the mainstream 2D convolutional layer as the basis
f the model structure, which only focused on appearances and
hort-term motions of video data, thus lacking the ability to
apture long-range temporal features. To address this problem,
emporal Segment Network (TSN) [6] method was proposed,
hich was designed for capturing long-range temporal features
f video representation by adopting sparse temporal sampling
trategy. The TSN increased the classification accuracy of the
enchmark data set UCF101 to 94.2%. Since then, researches
ocusing on learning long-term features of data has been deeply
xplored in the field of video diagnostic analysis.
It can be seen that the above methods all use two-stream

tructure to analyze the temporal and spatial flow respectively. To
implify the model structure, 3D ConvNets (C3D) [7], consisting
f 3 × 3 × 3 convolution kernels, are built to extract the temporal
nd spatial features of multi-images simultaneously. However, as
he C3D model expands the dimensionality of the convolution
ernel, the number of parameters to be trained is also expanded
everal times, resulting in reduced training efficiency. Inspired
y the state-of-art method Resnet in image recognition, some
cholars proposed Pseudo-3D Residual Networks (P3D) [8] by
ombining residual block with C3D model to reduce the param-
ters and structure complexity of the C3D. To further reduce the
arameters of a C3D model, a R(2 + 1)D model [9] mixing both
D and 1D networks was proposed and proved to be the baseline
ethod in video diagnosis field. Moreover, some tricks such as
SM [10] and attention pooling block [11] in C2D and C3D are
lso presented and show great potential on reducing compute and
etwork complexity.
To sum up, the researches on the video diagnosis technology

as been continuously updated, and it has achieved a good per-
ormance with regard to the accuracy in experiment. However,
he following problems are still faced in the application of video
iagnosis engineering,

(1) Large parameters of the feature learning model often lead
to over-fitting problems and high training time, which
hardly satisfy applied demand in industry.

(2) Low quality video data with massive invalid frame in-
cluded affects the speed of model convergence and the final
learning performance.

(3) Less attention is paid on fine-grained object or feature
action recognition in video, thus tiny object motions are
often ignored by existing models.

(4) There is a trade-off between the ability to learn the short-
term and long-term temporal feature for video diagnosis
model.

o solve above-mentioned problems, a temporal–spatial
ttention-based action recognition method (TARM) is proposed,
hich consists of the temporal-attention-based frame splitting
ode (TAB), the spatial-attention-based agent focusing mode

SAB) and the long-short term feature learning mode (LSB). The
AB mode is used to extract important frames from long and raw
ideo data, which provides an efficient way to form high quality
ideo data with less invalid frames from a raw video. The SAB
ode is built to map one single frame into one feature space

n which fine-grained object features can be strengthened, thus
voiding the negative impact of noise or unimportant objects in
frame on the video diagnosis. The LSB mode is put forward to
void the overfitting and the trade-off problems by combining
n improved C3D model to learn the short-term feature and a
ecurrent neural network to learn the long-term feature in video
eature extraction process.
 t
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2. Related works

Top performance of methods for video diagnosis use rich
tricks to capture spatial–temporal features in video input, such
as two-stream networks, 3D convolution networks and recurrent
networks.

2.1. Two stream networks

Two stream architectures are typically consisted of two paral-
lel networks named spatial stream and temporal stream respec-
tively. In detail, spatial stream takes as input images to learn their
appearance features, and temporal stream takes as input optical
flow to learn their motion features. Then, the output from two
streams should be fused to best discriminate spatial–temporal
feature of each video input comprehensively [5]. Although many
different variants of two stream models have been proposed and
studied, the optical flow estimation could not be ignored as its
significance on improving classification accuracy in two stream
networks for video diagnosis domain. However, the optical flow
estimation task is extremely difficult as predicting generic optical
flow requires a sufficiently large training set, thus leading to
long running time for video diagnosis. Several machine learning
methods have been applied to optical flow, such as Gaussian scale
mixture [12], restricted Boltzmann machines [13] and synchrony
autoencoder [14], which improved the calculation efficiency of
optical flow to a certain extent. To sum up, optical flow could
highly increase the performance of video diagnosis, but it also
increases the running time and decreases the algorithm efficiency
of two stream networks [15].

2.2. 3D convolution networks

3D convolution neural networks (3D CNNs) is proposed to
add temporal feature extraction function to 2D CNNs for video
analysis. As spatiotemporal feature can be learned by 3D CNNs, it
can be seen 3D CNNs lead to strong video diagnosis and action
recognition performance while training on a large-scale video
data [7]. Although 3D CNNs show great potential on video di-
agnosis and other extended domains such as action detection,
video captioning [16] and medical image segmentation [17], it
is still computationally intensive at training and not easy to
scale up for testing on big data. Therefore, how to reduce the
large parameters of 3D CNNs is a hot topic for researchers. At
present, the P3D model [8] and the R3D model [9] are two light
weight and advanced models. In these new models, a 3 × 3 × 3
NN kernel is replaced with several 1 × 3 × 3 CNN kernel and
× 1 × 1 CNN kernel, and the new kernels were proved to have a
etter performance and efficiency than the previous one. Besides,
D Channel-Separated-Network (CSN) [18] is also a method to
educe the complexity of C3D, where all convolution blocks are
actorized into either depth-wise 3 × 3 × 3 and pointwise

× 1 × 1 convolutions. To further decrease the need of C3D, a
ightweight Gated-Shift Module (GSM) [19] is proposed to only
pply a 2D-CNN with gated networks (simplified C3D) into a
ighly efficient feature extractor. By reviewing this state-of-the-
rt C3D variants, it can be concluded that scholars are trying
est to reduce the expensive computation of traditional C3D
y redesigning this structure. However, C3D is good at learning
patial features but has short receptive field on memorizing the
emporal features due to the common size of convolutional kernel
s 3. Therefore, a temporal-attention structure is indispensable for

emporal feature extraction.
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Fig. 1. The TARM flow chart.
.3. Recurrent networks

Recurrent networks are well-known methods for extracting
emporal features of long sequence data. To fully utilize the spa-
ial feature extraction ability of CNNs and long temporal feature
xtraction ability of recurrent networks, a Long-term Recurrent
onvolutional Networks (LRCNs) [20] is proposed for specific
ideo activity recognition. In addition, Gated-Recurrent-Unit Re-
urrent Networks (GRUs), concise and high performance of recur-
ent network are added to the last layer of deep CNNs to reduce
omplexity of the model units and enforce sparse connectivity
f inner structures [21]. Moreover, Long-Short Term Memory
LSTM) networks, classic recurrent networks are combined with
uto-encoder methods to complete several unsupervised tasks
uch as classification or prediction tasks. Although LTSM has
ood capability on learning temporal feature of data, the low
raining efficiency is still its main drawback. Therefore, some
ttention methods are used in LSTM to address this problem.
onvolutional LSTM (ConvLTSM) [22] and VideoLSTM [23] both
xtend the fully connected LSTM (FC-LSTM) with convolutional
tructures to maintain the spatial feature as much as possible,
hich are able to capture spatiotemporal correlations better and
onsistently outperforms FC-LSTM in tests. Moreover, VideoLSTM
ses the flow images as motion-attention guides to help generate
he attention maps while using RGB appearance input. The above
STM variants perform well on several open-source datasets. Long
hort-Term Attention (LSTA) [24] extends LSTMwith pooling RNN
ell and output gating modules to realize smooth attention track-
ng and high-capacity information storing. Moreover, a Global
ontext-Aware Attention LSTM (GCA-LSTM) [25] shows robust
erformance on selectively focusing on the informative joints in
ach frame of the skeleton sequence by feeding the global contex-
ual information into all steps. In the complicate video captioning
ask, Spatio-Temporal and Temporo-Spatial (STaTS) attention-
ased language model [26] was proposed to build reliable re-
ationships between captions and videos, which inspires me to
ropose a light-weight, attention-based and industry-oriented
odel in the intelligent diagnosis task.
To sum up, each tool method of video diagnosis has its own

dvantages and is suitable for different types of input video
ata. Competing other methods in benchmark dataset may not
ean it can behave high performance on another dataset with
iverse types. In this paper, engineering operating video data was
ollected and analyzed, and a comprehensive temporal–spatial
eature extraction model was proposed to diagnose engineering
ata autonomously with high efficiency and effect.

. Model establishing

.1. Architecture of TARM

TARM, a temporal–spatial attention-based action recognition

ethod, consists of TAB, SAB and LSB models. The main purpose
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of TARM is to improve the efficiency and performance of video
diagnosis methods so that it can be applied to real industry and
factories where near real-time and high accuracy diagnosis need
to be satisfied. The dataflow of TARM as shown in Fig. 1. The
three sub-models achieve this goal from vary perspective. More
specifically, TAB aims at filtering out static and redundant video
contents so as to form a high-quality video dataset for training
in the next step, which reduces the data size from temporal
perspective. Then SAB targets at mapping each frame of the video
in the dataset to a feature space where desired features are
reinforced, and other irrelevant features are weakened, which
reduces the data size from spatial perspective. Finally, LSB focuses
on learning the long and short-term features of video from the
dataset to complete video diagnosis task, which improves the
model’s ability to sufficiently extract features and enhance the
performance of final model by both paying attention to long-term
and short term of data features.

3.2. Temporal-attention-based frame splitting mode (TAB)

The TAB aims at extracting frames that are helpful for feature
learning from original video data, reducing the negative impact of
long invalid segments of original video on learning performance.
If a video clip without motion for a relatively long time, it can be
defined as an invalid segment. This part focuses on the temporal
dimension of video data and calculates the optical flow matrix for
each frame to act as an indicator to determine whether the frame
has motion or not.

To visualize the optical flow, the optical flow matrix is mapped
from Cartesian coordinates to polar coordinates to form an HSV
image. As ranges of the three channels of HSV images are vary
(h ∈ [0, 180]; s ∈ [0, 255]; v ∈ [0, 255]), the HSV color space
is converted to BGR color space to conveniently calculate three-
channel optical flow matrix value [27]. The ranges of each value
of BGR are all in the interval of [0, 255]. Then, the BGR image is
converted to the grayscale image, then the average optical flow
of each frame can be computed [28].

Due to the interference of the motion noise, the average value
of the optical flow directly solved by the above method cannot
accurately reflect the motion feature of the frame. More specifi-
cally, Fig. 2 shows gray images of the optical flow result from a
static image and a dynamic image respectively. Fig. 2(a) is a static
frame. Fig. 2(b) is the optical flow image of the static frame, and
the random noise are filled in this image. (The average optical
flow value is around 3.751.) Fig. 2(c) is a dynamic frame, and an
operator is fastening bolt into a part. Fig. 2(d) is the optical flow
image of the dynamic frame, in which no obvious noise is shown,
and fingers motion is clear to see. (The average optical flow value
is about 3.896.) It can be seen in the figure that the average optical
flow of the static frame is similar to the dynamic one, which is not

true in reality. Therefore, even though the optical flow method
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Fig. 2. The optical flow images in static and dynamic images.
an reflect the motion feature of a frame, static frames are easily
o be considered as dynamic frames due to the motion noise.

In order to improve the frame motion discrimination capabil-
ty by the average optical flow, this paper introduces the noise
udgment method based on the partition idea to reduce the noise
ffect on average optical flow calculation.
The noise judgment method based on the partition idea uses

he random and scattered characteristics of the noise distribu-
ion to identify the noisy optical flow frame. The noise is usu-
lly caused by the instability of the photographic equipment
nd uncontrollable ground vibration, because ground vibration
ill cause the dynamic vibration of the photographic equipment,
hich could make photographic equipment mistake static light
nd shadow for noise. Considering the randomness of ground
ibration frequency and the difference of resonance frequency
f each element, we assume that the appearance of noise obeys
aussian distribution. Based on this assumption, we divide the
ptical flow image into five blocks named I–V respectively, as
hown in Fig. 3(a). After dividing blocks, it can be seen that each
artition of I–V of the image with the obvious noise feature are
overed with optical flows regularly, as shown in Fig. 3(b). It can
lso be discovered that the optical flow of image with less noise
overs only 1–2 blocks and the optical flows are concentrated in
specific area which can be defined as the valid optical flow, as
hown in Fig. 3(c).
Specifically, the probability of a noise point appearing in a

lose-to-center area (block V) is slightly greater than far-to-center
rea (block I, II, III, IV). Moreover, the probability of noise points
ppearing in the five divided regions is not 0 and the difference
s small. To distinguish a frame with the random noise, noise
udgment constraints are defined as follow.

hite noise if⎧⎪⎨⎪⎩
F I , F II , F III , FVI , FV > 0

max(F I , F II , F III , FVI , FV ) − min(F I , F II , F III , FVI , FV ) < ε

FV ≥ max(F I , F II , F III , FVI )

(1)

where, F I , F II , F III , FVI , FV are the average optical flow value in
ive blocks respectively (I, II, III, IV, V), ε represents the upper limit
f the difference between the maximum average optical flow and
he minimum average optical flow of the five partitions of the
hite noise image. It should be noted that all three inequalities

n formula (1) must be satisfied before the image can be judged
s a noise image.
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By doing experiments, we found this method can effectively
recognize noisy frame. It can also be used to other tasks and
videos which have the Gaussian noise interference. The fine-
tuning work is simple. In the extreme condition, the maximum
gap between the average optical flow of each block is 255 (one
block is completely filled with optical flow and the other block
has no optical flow at all), so we only need to adjust at most
255 times in the worst case. In fact, we only need to fine-tune
in the 0–20 range, because the larger the threshold ε, the looser
the conditions for identifying noise, and the smaller the threshold
ε, the more stringent the conditions for identifying noise.

While noise images are determined, the median filter is used
to reduce the interference of white noise on the average optical
flow calculation, as the nonlinear median filter is proved to be
effective in removing speckle noise.

After filtering optical noises, an automatic editing method for
video based on double pointers is proposed in this section, which
aims to find and save motion video frames and cut off static and
redundant video clips. The basic step is as follows (the pseudo
code is shown in Appendix):

(1) Create a start pointer S and an end pointer E and put the
two pointers in the head of the video frames.

(2) Calculate the average optical flow of each frame.
(3) Set the upper threshold µmax and lower threshold µmin of

the optical flow average. When the average optical flow of
a frame is lower than the lower threshold, it means that the
frame has little change compared to the frame at the next
time step, so this frame is labeled as p; when the average
optical flow is higher than the lower threshold and lower
than the upper threshold, it means that the frame has a
relatively big change compared to the frame at the next
time step, so this frame is labeled as m; when the average
optical flow is higher than the upper threshold, it means
that the frame has a significant change compared with the
frame of the next time step, so this frame is labeled as r.

(4) The E pointer scans each frame in chronological order.
When the E pointer encounters the frame marked as m
and r, the E pointer moves to the next frame without
any operation. When the E pointer encounters the frame
marked as p, relabel this frame as E. Repeat the step (5)
until the whole frames are scanned.

(5) The S pointer scans each frame in chronological order.
When the S pointer encounters the frame marked p and
r, the S pointer moves to the next frame without any oper-
ation. When the S pointer encounters the frame marked m,
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Fig. 3. Demonstration diagram of optical flow image blocks.
Fig. 4. Demonstration of the automatic editing method.
relabel this frame as S. Repeat the step (5) until the whole
frames are scanned.

(6) Search frames sequentially. When the frame marked S is
encountered for the first time, find the frame marked E
for the first time after the frame. Then, record the corre-
sponding time steps of the two pointers as a segment pair
(tS1, tE1) and stored in the segment frames database.

(7) Search for the frame with mark S after tE1 + 1 time step,
and look for the nearest E pointer after the S pointer to
form a new segment pair and store it in the segment frames
database.

(8) Repeat the step (7) until no new segment pair can be stored
in the segment frames database. The segment pairs stored
in the database are the effective start and end editing
points of valid video frames.

The automatic editing method can be depicted in Fig. 4.
Through the above method, a large number of subdivided

small videos can be obtained from the original video and invalid
clips with no obvious motion changes can be deleted (usually
such invalid clip occupies a large part of the video). Moreover,
this algorithm guarantees that different motions in the video will
be separated to isolated clips as still frames are existed between
two motion frames and can be recognized by the algorithm.

After automatic editing the frames, each clip is labeled manu-
ally with motion type to form an engineering dataset that can be
used for feature learning.
463
3.3. The spatial-attention-based agent focusing mode (SAB)

There are many features in one frame. Focusing on different
feature would lead to different motion recognition results. The
feature recognition process is shown in Fig. 5. The last feature
layer (convolution layer) is the activation mapping. Fig. 5(a) is
the original tightening operation frame, and Fig. 5(b) and (c) are
the heat maps representing the feature parts that the learning
model focuses on. It can be seen that the learning model focuses
on the hand feature in Fig. 5(b) and focuses on the bolt feature in
Fig. 5(c), which could cause different classification results.

Therefore, before entering to feature learning mode, guiding
the learning model to pay more attention on important features
could get better benefits and achieve higher diagnosis accuracy.

The SAB mode is proposed to map the frame into feature
space where important features are emphasized. The flowchart
of the SAB as shown in Fig. 6. Firstly, a deep pretrained networks
(Googlenet) is used as basic structure of the learning model
from [29] due to this model achieves high performance on feature
extraction and image classification at present. Secondly, the top
10 layers of the Googlenet, owing the ability to extract general
features from any data, are frozen (the parameters of these layers
cannot be altered while training) so that the feature extraction
ability from the original Googlenet can be utilized and transferred
to new tasks. Then, the next 15 layers of the model, owing the
ability to extract specific features from data, are not frozen so as
to be updated by training with new image data. Thirdly, the last
classification layer of the model is replaced by fully-connected
layers, so that the Googlenet model can be trained to extract
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Fig. 5. Example of feature learning process in visualize way.
Fig. 6. The flowchart of the SAB mode.
mportant feature based on new data source. Finally, data with
esired key features are collected to train the built model, thus
aking the model be able to recognize important features.
In detail, search and collect image data with desired features

n the picture encyclopedia, and then train the improved model
ith the collected data. The training objective is to increase the
pecific feature extraction ability of the SAB model. The classes
e choose are bolts, hands, clothes, mechanical parts, desks and
achines. The loss function is the cross entropy of the predict
utput and the real label (one-hot encoding). The input sizes of
he fully-connected layers are 1000, 512 and 128, respectively
each output layer is followed by a dropout method to reduce
verfitting effects). After training process, the improved model
ets the capability to map images to feature space where desired
eatures we need are strengthened.

.4. Long-short term memory-based feature learning mode (LSB)

Through the above method, the video data are edited into a
ollection of multiple video clips with important motion features,
hich reduce the complexity of video diagnosis methods. In
his section, an LSB model integrating P3D blocks (as shown in
ig. 7) and recurrent model is proposed as a novel video diagnosis
ethod to achieve high performance on video diagnosis in terms
f diagnosis accuracy and training time cost. As shown in Fig. 8,
he LSB model combines the feature learning capabilities of the
3D model for short-term clips and the GRU for long-term clips to
464
improve the accuracy of the model. Moreover, an improvement is
made in this model to increase its efficiency, that is, the C2D+C1D
model is proposed based on the C3D model to reduce the training
cost used in video diagnosis, where the C2D model is able to
extract spatial feature, and the C1D model is able to extract
temporal model.

4. Experiments

4.1. Datasets

The purpose of the engineering application in this paper is
to propose an intelligent method to automatically monitor and
diagnose the worker’s operation process, replacing manual video
diagnosis methods that is energy and time consuming for hu-
man. Therefore, a large number of video data recorded during
the operation of workers are collected as the experimental data
to demonstrate and verify the reliability and robustness of the
proposed model in this paper. The video data consist of three
actions: a worker tightens the bolts correctly, a worker tightens
the bolts incorrectly, and a worker unloads the bolts. Due to
the above-mentioned actions are frequently occurred in industry,
proposing a model that is able to discriminate these actions
in video clips can realize automatic diagnosis of worker action
and make intelligent manufacturing technology come true in
engineering.
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Fig. 8. The process of the LSB model.
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.2. Temporal-attention-based frame splitting mode (TAB)

.2.1. Noise judgment method based on the partition idea
To verify the effectiveness of the noise judgment method on

iltering the optical flow noise, it compares the optical flow image
ith and without the processing of the noise filtering method.
he comparison results as shown in Fig. 9. Fig. 9(a) and (b) are
he comparison of the noise optical flow without and with the
oise filtering method respectively. It can be seen in Fig. 9(a)–(b)
hat most of noise are filtered by using the noise filtering method
roposed in this paper and the average optical flow of the noise
mage is reduced from 3.751 to 1.310, which decreases the possi-
ility of misclassification. Fig. 9(c) and (d) are the comparison of
he clean optical flow without and with the noise filtering method
espectively. Due to no noise are emerged in the original optical
low frame, the filtering method regards it as a clean optical flow
rame.

From this experiment, it can be concluded that the noise judg-
ent method based on the partition idea show great performance
n discriminating noise optical flow frames.

.2.2. Sensitivity analysis for automatic editing method
The automatic editing method we proposed has two hyper

arameters µ , µ . Due to the influence of noise, the choice
min max
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of µmin is highly sensitive to the performance, so we fix µmax
o 10 (insensitive to results) and perform sensitivity analysis on
min. In this experiment, a one-hour worker operation video is
nput to this automatic editing method (20 min static frames and
0 assembly actions are ground truth (GT)). µmin is selected in
he open interval of 0–10. The sensitivity analysis results can be
hown in Figs. 10 and 11.
It can be summarized that µmin = 5 is a better choice, because

ll the prediction metrics in this value are close to the ground
ruth. Therefore, the hyper parameters we adopted in this video
ask are µmax = 10, µmin = 5 (hyper parameters can be adjusted
ccording to real situation), then algorithm 1 is performed to
utomatically split the video data. The algorithm predicts 18.0
in static frames and split 90 actions clips in the video. From the

esults, it can be known that the algorithm has a strong ability to
plit video clips, thus some videos containing only one action are
till segmented to several clips. By analyzing the segmentation
esults, we find that some operator assembly actions are slow, so
any meaningless movements that are unrelated to the assembly
ppear in one action, and these movements are segmented by
he automatic editing method. As over-segmented video clips
re eventually labeled by human, the irrelevant actions can be
xamined and deleted, so they have no effect on the following
raining results. Moreover, this over-segmentation ability can
void missing some small actions related to assembly process.
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Fig. 9. The experiment results of the noise judgment method based on the partition idea.
Fig. 10. Sensitivity analysis for static duration prediction.
Fig. 11. Sensitivity analysis for action count estimation.
In this experiment, a total of 100 videos of three action cat-
gories are prepared by this model, with video duration ranging
rom 20 s to 30 s, which are divided into the training and test set
ased on the proportion of 7:3.
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4.3. The spatial-attention-based agent focusing mode (SAB)

To identify the types of operator actions, and at the same
time distinguish whether the bolts are qualified to tighten after
the operator completes the operation, the worker’s hands and
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Table 1
The architecture of state-of-the-art models.
C3D P3D/R3D LRCN LSB

Conv1
[3 × 3 × 3, 64]

Conv1 [3 × 7 × 7, 64] TimeDistributed
Conv1
[7 × 7, 32]

Conv1
[3 × 7 × 7, 64]

Conv2
[3 × 3 × 3, 128]

Conv2[
1 × 3 × 3, 32
3 × 1 × 1, 32

]
× 3

TimeDistributed
Conv2
[3 × 3, 32]

Conv2[
1 × 3 × 3, 32
3 × 1 × 1, 32

]
× 3

Conv3[
3 × 3 × 3, 256
3 × 3 × 3, 256

] Conv3[
1 × 3 × 3, 64
3 × 1 × 1, 64

]
× 3

TimeDistributed
Conv3
[3 × 3, 64] × 2

Conv3[
1 × 3 × 3, 64
3 × 1 × 1, 64

]
× 3

Conv4[
3 × 3 × 3, 512
3 × 3 × 3, 512

]
× 2

Conv4[
1 × 3 × 3, 128
3 × 1 × 1, 128

]
× 3

TimeDistributed
Conv4
[3 × 3, 128] × 2

Conv4[
1 × 3 × 3, 128
3 × 1 × 1, 128

]
× 3

Dense
[4096] × 2

Conv5[
1 × 3 × 3, 256
3 × 1 × 1, 256

]
× 3

TimeDistributed
Conv5
[3 × 3, 256] × 2

Conv5[
1 × 3 × 3, 256
3 × 1 × 1, 256

]
× 3

Dense [4096] × 2 TimeDistributed
Conv6
[3 × 3, 512] × 2

GRU [2048]

LSTM [2048]

Classification layer
Fig. 12. The accuracy curve of the SAB.

olts are two features that need to be focused on during feature
xtraction. Firstly, tons of images with hand and bolt features are
ollected to form the image dataset. Then the image dataset is
ivided into the training and test set based on the proportion of
:3. Next, the training and test dataset are input to train the SAB,
here the number of training epochs is set to 20, the batch size is
et to 12, the optimizer we adopted is ADAM algorithm [30] and
he learning rate is set to 0.0002. The training accuracy curve and
oss curve are shown in Figs. 12 and 13.

It can be seen from Figs. 12 and 13 that the SAB model has
ood learning performance on the collected dataset. In order to
erify that the model has the ability to learn the characteristics of
ands and bolts, multiple operation diagrams are input into the
rained model, and the visualized heat map of feature learning
re produced to reflect the training effect. The result is shown
n Fig. 14.

It can be seen from the heat map that the well-trained SAB
odel has the ability to capture the features of the operator’s
and and bolt. Afterwards, the data processed by the SAB form
he attention-based dataset for the LSB model training.
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Fig. 13. The loss curve of the SAB.

4.4. Long-short term memory-based feature learning mode (LSB)

The LSB model is used to complete the video diagnosis task.
The processor of the computer used in this experiment is In-
tel(R) Core(TM) i7-8565U CPU. To validate the state-of-art of
the proposed model, the C3D model, P3D model, R3D model
and LRCN model, which do not contain attention mechanism,
are compared with the LSB model by training them with the
same videos collected in this paper. Moreover, attention-based
models such as GSM, LSTA and SAB-LSB (ours) model are also
added to the comparison task to validate the effectiveness of
the SAB model in video diagnosis task. As varies in architecture
of state-of-the-art models, it is not appropriate to directly use
these models from other papers without any adjustment. In order
to ensure the fairness of the comparative test, the number of
training parameters of each model is guaranteed to be in the same
order of magnitude by adding some dense layers at the end of
some models. The above compared model architectures can be
seen in Table 1.
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Fig. 14. The visualization heat map of the training process in the SAB model.
Fig. 15. The training accuracy of the models.
The training and validating results as shown in Figs. 15–18. It
should be noted that the curves of each model are smoothed to
reflect the trend of each curve more clearly.

To verify the efficiency of those models, the parameters num-
ber (PN), the total training time (TT), the final validation accuracy
rate (FR) and the average inference time (IT) are compared in the
Table 2. By testing the inference time, the hyper parameters are
set to the same value. In detail, the batch size of the input frames
is 16, the input frame size is (80,80,3) and each action duration is
20 s. The inference time of each video is computed by setting time
functions before and after the main test function respectively and
calculating the difference between the two time-value. 35 action
videos are input to calculate the average inference time. It should
be noted that only CPU is adopted to do the inference task.

It can be seen that the LSB model outperforms all baseline
models without attention mechanism (C3D, P3D, R3D, LRCN)
in terms of the training accuracy and training loss, while the
performance of the LSB and C3D model are similar and both
outperform other models with regard to the validation accuracy
and validation loss. As the total training time and inference time
of C3D is bigger than the LSB, it can be concluded that the
LSB model has a comprehensive performance on video diagnosis

tasks.
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Table 2
Performance comparisons in terms of parameters number, total training time
and final validation accuracy rate.
Models PN TT VR IT

C3D 82,202,371 65.14 h 60.48% 79.48 s
P3D 53,150,403 17.07 h 51.41% 45.42 s
R3D 53,150,403 17.85 h 49.06% 48.88 s
LRCN 25,709,859 7.84 h 43.91% 20.89 s
GSM – 7.42 h 84.18% 17.29 s
LSTA – 8.50 h 67.19% 20.23 s
LSB (ours) 63,755,523 9.27 h 64.38% 18.43 s
SAB-LSB (ours) 63,755,523 5.22 h 90.07% 15.45 s

To further do comparative experiments in attention-based
models, the GSM, LSTA and SAB-LAB model are also compared,
and the training and validation results are shown in Figs. 19–
22. The LSB without SAB model is also added to do the ablation
experiment.

It can be seen that the SAB-LSB model outperforms the LSB
model at every aspect, which could prove that the preprocessed
dataset by the SAB model can boost the training efficiency and
increase effect of the LSB model in video feature learning. More-
over, GSM and LSTA also show good performance on training time
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Fig. 16. The training loss of the models.
Fig. 17. The validation accuracy of the models.
Fig. 18. The validation loss of the models.
nd inference time than baseline models. We can conclude that
ttention tricks in action recognition models can accelerate the
raining time of video diagnosis tasks and shorten the inference
ime of video test. It should be mentioned that the evaluation
469
scenario is not very complex, but it is a realistic scenario for the
application. By doing this evaluation test, the robust and good
performance of our model are validated. At present, this method
is put into practice and show a reliable result.
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Fig. 19. The training accuracy of attention-based models.

Fig. 20. The training loss of attention-based models.

Fig. 21. The validation accuracy of attention-based models.
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5

Fig. 22. The validation loss of attention-based models.
. Discussion

1. Training time. It can be seen that 3D convolutional kernels
lead to longer training time, although validation accuracy
performance is relatively high (at 60.48%). The C3D model
mainly consists of 3D convolutional kernels, so it spends
the longest time finishing the training task among whole
above models (65.14 h). The P3D and R3D models replace
C3D model with C1D kernel plus C2D kernels in different
ways, reducing the training time and complexity of the
model. The LRCN model consists of the 2D CNN kernels
and the long-term feature learning model LSTM, which
shows higher training efficiency (7.84 h) than those models
without long-term feature learning module, such as the
C3D model (65.14 h), P3Dmodel (17.07 h) and R3D model.
The LSB model takes advantage of the good points of the
P3D model and LRCN model by combining P3D model with
a concise long-term feature learning model GRU. Therefore,
even the LSB model has larger size of parameters than the
P3D model, the training time of the LSB is shorter than the
P3D model. The SAB-LSB model has the best performance
on training efficiency (5.22 h) and inference time (15.45 s
per video) among all models, as the SAB model extracts the
key features of training dataset to the LSB model before,
saving the time for the LSB model to learn data features.
Attention-based model such as GSM and LSTA also show
good performance on training time and inference time in
experiments.

2. Over-fitting problem. Over-fitting problem is the main
cause to a low validate accuracy of video diagnosis models.
The LRCN model has a serious over-fitting problem as
there is a significant gap between the training and val-
idation accuracy rate. It may contribute to the fact that
some hyper-parameters of the LRCN model are adjusted
to make sure the model can be compared in a relatively
same level (same multitude of parameters number), which
increases the training parameters number. The over-fitting
problem in the C3D model, P3D model, R3D model and LSB
model are reduced relatively, but the validation accuracy
of each model is still around 65%. The SAB-LSB model has
the best validation accuracy, which proves it reduces the
over-fitting problem very well. It also shows that data pre-
processing by the SAB can decrease the effect of over-fitting
problem on model training.
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3. Induction discussion. Since the LSB model has a better
performance than other state-of-the-art models such as
the C3D model, P3D model, R3D model and LRCN model,
it can be easily concluded that the SAB-LSB model has
a better performance than the SAB-C3D, SAB-P3D model,
SAB-R3D model and SAB-LRCN model. Also noteworthy is
that every model has its application condition, choosing the
appropriate state-of-the-art model for specific application
situation would make the best result. For example, if video
clips are short enough, long-term feature learning model
is not necessary applied to video diagnosis task because
short-term feature learning model can satisfy the need for
feature learning.

4. There is no standard way to build attention tricks, all tricks
should be built according to the project demand. For exam-
ple, if the complexity of C3D is the main bottleneck of the
whole model, designing a light-weight gated-shift module
to replace C3D is a good option (i.e. GSM); if the base
model is weak in spatial feature extraction, then a spatial
attention trick could be added to the model (i.e. LSTA); if
the important features have been clarified based on en-
gineering experience, information-based attention model
can be designed to avoid models learning knowledge from
scratch (i.e. TARM).

5. It should be noted that hyper-parameters and structure of
the state-of-the-art models are altered to make sure the
comparative experiments be fair. Therefore, the results of
the experiment are relative rather than absolute. If each
model is adjusted to the best state, the results of each
model are not comparable due to the different size of
model parameters. In addition, the LSB model is inspired
by the LRCN model and the P3D model, so it has both
advantages of these two models and overcome the limits
of each model in video diagnosis process. Moreover, the
SAB model provides the possibility to greatly simplify the
complexity and improve the efficiency and accuracy of
video diagnosis, as it extracts important features from the
video data in advance to avoid the model training large
amount of redundant video data.

6. As a high computing cost is demanded in the video data
training, it is impossible to train benchmark datasets such
as UCF101 and HMDB51 by using a CPU. Therefore, TARM
has its restriction that the size of video dataset should not

be too big.
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7. It can be seen that attention-based tricks play an essential
role in accelerating the training time and inference time of
video recognition models, so attention tricks can be further
explored and designed to reduce the complexity of these
models in the future works. It is a potential research area
that can be beneficial to both academics and industry.

6. Conclusion

There are three contributions of the model presented in this
paper, which are detailed as follow:

1. The TARM model is proposed to improve video diagnosis
performance on video dataset with long-term and fine-
grained features to learn. Attention-based mechanisms and
long-short term feature learning model are main ideas
of TARM. In detail, temporal attention-based mechanism
focuses on temporal dimension of the video data to filter
out motionless video contents in raw industrial video data.
Spatial attention-based mechanism concentrates on spatial
dimension of each frame of video to reinforce its key fea-
tures and weaken its other features. Long-short-term fea-
ture learning model focuses on extracting both long-term
and short-term feature of video data sufficiently to bet-
ter learn fine-grained, minor changed and long correlation
video data features.

2. To verify the high accuracy and efficiency in training and
inference phases of TRAM, baseline models and attention-
based models are cited, compared and discussed in this
paper. To validate robust of TRAM on the application of
industrial video diagnosis, manual assembly action videos,
consisting of the normal assembly operation, wrong assem-
bly operation and prepared action, are recorded to be used
as the experimental dataset in this paper. The number of
each model’s training parameters and structure is tuned to
ensure a fair comparison. The total training time, training
accuracy and loss, validation accuracy and loss of each
model are compared.

3. In results, TARM outperforms the state-of-the-art mod-
els and decreases the over-fitting problem while training
video data. Moreover, TARM shows potential in intelligent
video diagnosis in industry, because the training efficiency
and accuracy are highest in the comparative experiments.
It can be look forward that TARM will probably play an
essential role in the industrial video fault diagnosis and
monitoring.
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