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Abstract—To improve the modeling precision of bolted joint 

interfaces, an improved transversely isotropic virtual materials 

model is proposed by introducing a calculation method of elastic 

modulus of composite materials. The joint interface is regarded 

as a transversely isotropic virtual material that is rigidly linked 

to two components with a rotation axis parallel to the normal 

direction of the interface. The elastic and shear moduli of 

micro-contact asperities are deduced using Hertz contact theory 

and fractal geometry. Using the calculation method for a 

composite, the elastic and shear moduli of the entire joint 

interface were determined, which enabled the parameters of 

transversely isotropic virtual material to be determined. The 

theoretical results obtained using this transversely isotropic 

virtual material model were compared with experimental ones 

by comparing the mode shapes qualitatively and the natural 

frequencies quantitatively. The theoretical shapes of the 

vibration modes were consistent with the experimental ones, 

and the errors of the natural frequencies were no more than 

5%. Compared with the conventional modeling method for 

bolted joint interfaces, the modeling precision was greatly 

improved. 

I. INTRODUCTION 

Prediction of the static and dynamic characteristics of 
equipment and optimization of the structure of its 
components has attracted recent research attention. Bolted 
joints are widely used to connect different components in 
machine tool assembly, which results in the generation of 
many joint interfaces. Approximately 90% of the total 
damping and 60%–80% of the total stiffness in the structure 
of a machine tool is associated with these joint interfaces 
[1-6]. Consequently, it is critical to establish an accurate 
model for bolted joint interfaces [7-8] to analysis and predict 
the dynamic characteristic of the structure of machine tools. 

The dynamic behavior and modeling methods of bolted 
joint interfaces have been widely studied both theoretically 
and experimentally for many years. RWTH Aachen WZL [9] 
investigated the relationships between the normal and 
tangential stiffness and the pressure applied to joint 
interfaces in terms of static and dynamic characteristics. Kim 
et al. [10] reported that the contact element method has 
higher precision for bolted joints than several finite element 
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methods. Zhang et al. [11] established a fractal model for 
tangential stiffness based on contact fractal theory. Tian et al. 
[12] proposed an virtual material method of bolted joint 
interfaces in machine tools to simplify the modeling process, 
and  Huang et al. [13] performed bolt preload simulations 
using the virtual material method proposed by Tian [12]. 
Liao et al. [2] proposed an isotropic virtual gradient material 
model by dividing the virtual material into several layers to 
improve the modeling precision. 

To establish a model for joint interfaces, both a 
spring-damping model and virtual material method should be 
considered. The dynamic model of joint interfaces is usually 
simplified into a group of spring and damping elements, 
which is known as a spring-damping model. However, the 
precision of this method is low, and this approach neglects the 
coupling relations between each viscoelastic element and the 
effects of the material, contact surface parameters, and 
pre-tightening force. Instead, bolted joint interfaces can be 
considered virtual materials, and properties such as the elastic 
and shear moduli, Poisson ratio et al. can be determined using 
a theoretical method; such an approach is known as a virtual 
material method. Nevertheless, the elastic modulus of a joint 
interface obtained by integrating the contribution of the 
elastic modulus for every micro-contact asperity is not 
convergent. Therefore, the isotropic material model must be 
converted into an orthotropic material model, which results in 
a Poisson ratio beyond the available range [−1, 0.5] in finite 
element analysis software. To address this issue, a 
transversely isotropic virtual material [14] was adopted in the 
model proposed in this work because of the different 
attributes of a joint interface between the XOY plane and the 
normal direction of the contact area. 

To establish a more accurate modeling method, an 
improved transversely isotropic virtual material method is 
proposed in the current work. First, a general model for the 
elastic and shear moduli for each micro-contact asperity was 
established on account of Hertz contact theory and fractal 
geometry. Second, the elastic and shear moduli of the entire 
joint interface were determined using the calculation method 
for a composite, and then, five parameters of the transversely 
isotropic virtual material were determined. Finally, the first 
six natural frequencies and mode shapes of the theoretical and 
experimental results were compared, and the efficiency of the 
proposed model was verified. 
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II. MODELING FOR BOLTED JOINTS 

A. Normal and shear contact modulus model of a 

micro-contact 

When viewed under a microscope, a rough contact 
interface can be characterized by its continuity and statistical 
self-affinity as well as the non-differentiability 
Weierstrass–Mandelbrot (W–M) fractal function, which can 
be described by 
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where Z(x) is the surface height, x is the lateral distance, L is 
the sample length, D is the fractal dimension, and G is the 
fractal roughness parameter, γ is the dimension parameter of 
the spectral density (γ > 1), its typical value is γ = 1.5. 

A rough contact surface is modeled as being composed of 
many spherical micro-asperities. To simplify the model, the 
surface can be modeled as an equivalent rough surface in 
contact with an assumed rigid plane, as illustrated in Fig. 1. 

Based on Hertz contact theory, the normal contact load of 
an elastic micro-asperity is 
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 are the Poisson 

ratios of the two contact surfaces; and 
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E are the elastic 

moduli of the two contact surfaces.  

Figure 1. Equivalent model of two micro-asperities 

According to the geometric relations, the micro-asperity 
radius is 
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The deformation of the micro-asperity can be described 
as: 


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where 
2

a r   is the truncated area of the micro-contact 

asperity. 

Substituting (4) into (2) yields 
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The normal load for a plastically deformed micro-asperity 
is 


p
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The deformation of a micro-contact asperity can be 
divided into two stages, elastic stages and plastic deformation 
stages, depending on its size, and the deformation is 
considered to be a continuous process [16]. Therefore, 
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The critical truncated area 
c

a   demarcating the elastic and 

plastic stages can be determined using (5), (6), and (7) and is 
expressed as 
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Because of the assumption of continuous deformation of 
micro-contact asperities, the relationship presented in (8) 
differs from that in [12] and [17]. 

The statistical size distribution of the truncated area a  , 

which corresponds to the parameter  r  , as shown in Fig. 1, 
takes the form 
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where 
L

a   denotes the truncated area of the largest elastic 

micro-asperity, and  express the domain extension factor 

for size distribution of the micro-asperity, which satisfies 
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The normal force F of the entire joint interface can be 
calculated by integrating the contribution of the elastically 
and plastically deformed micro-asperities: 



       

 
 

0

* 1

1 0.5 0.5 1.5 1.5

1 0.5 0.5 1 0.5

4
  

3 2 3 2

     
2

cL

c

aa

e p

a

D

D D D D

L L c

D D D

L c

F f a n a da f a n a da

E D G
a a a

D

D H
a a

D












  

 

      

   


 


 

 

The strain and normal stress for an elastic micro-asperity 
is can be obtained, as show in (12) (13), respectively, 
according to the definition. 
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where a  is the area of an elastic micro-contact, and also can 

be express as 2
a r . 

Substituting (5) and (12) into (13) yields 
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Therefore, the elastic modulus of the two micro-contact 
asperities can be derived: 
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According to the report given by Tian et al. [12], the shear 
modulus between two micro-contact asperities can be 
described as  
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Here,   
denotes the ratio of the tangential to normal load of 

the total contact interface; f

 is the friction coefficient of the 

contact surfaces; and *
G  is the equivalent shear modulus of 

the two contact surfaces, expressed as 
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B. Elastic and shear moduli of contact interface 

As show in (17), the elastic modulus of a joint interface 
obtained by integrating the contribution of the elastic 
modulus for every micro-contact asperity is normally not 
convergent.  
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To solve this problem, a new calculation model of elastic 
modulus was adopted based on the composite material. As 
shown in Fig. 2, the general relations between the equivalent 
elastic modulus and the elastic modulus of each part can be 
expressed as 
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The contact interface of a bolted joint consists of 
micro-contacts with different elastic moduli. Using the 
calculation method for a composite material, the elastic and 

shear moduli of the entire joint interface can be determined. 
The area of the elastic micro-asperity with truncated area   can 
be described as ( )n a ada  . Therefore, the normal elastic 

modulus for the entire joint interface is 
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where 
a

A  is the nominal area of the contact region. 

Likewise, the shear elastic modulus for the entire joint 
interface can be expressed as 
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Figure 2. Elastic modulus of composite material 

C. Determination of parameters for transversely isotropic 

virtual materials 

A transversely isotropic material is defined by five 

independent elastic constants, as shown in Fig. 3, namely 
x

E , 

z
E , 

xy
 , 

zx
  and 

xz
G , and its rotation axis is parallel to the 

normal direction of the joint interface. 

Figure 3. Model of transversely isotropic virtual material 

There are many gaps between the surface asperities, 
whose volume is a small part of entire contact interface. 
There, in consideration of the contact rate between the two 
micro-contact asperities, the equivalent elastic modulus of 
the X- or Y-axis of the defined virtual material is 
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where 
r

A  is the real contact area of the contact interface. 
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In equation (20), the area of an elastic micro-asperity a is 
used to derive the real contact area of the joint interface 

instead of the truncated area  a  that presented in [14]. Thus, 

it should contain 
L

a  as show in (21). 
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The parameters of a transversely isotropic material, 
Z

E  

and 
xz

G  can be assumed to be E  and G


derived in the 

previous section of this paper, respectively. There is no need 
to convert the joint stiffness to the properties of transversely 
isotropic material. 

As for the Passion ration of transversely isotropic 
material, Zhang et al. [14] suggested that the transverse 
deformation of a joint interface is closely related to the 
contact rate of the joint interface. In general, this ratio is so 

small that the strain of the X-axis can be expressed as 0
x

  ; 

thus, the Poisson ratio in the X–Z plane can be expressed as 
0

zx x z
v     .Likewise, 0

xy
  . Thus, the five independent 

elastic constants of the transversely isotropic material can be 
expressed as 
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Combining the new model of elastic and shear moduli of 
contact interface with the method of transversely virtual 
material proposed by Zhang [14], the proposed model of this 
paper was established. The parameters of the transversely 
isotropic virtual material can be determined using (11) and 
(22). The area of the virtual material is the same size as the 
nominal area of the contact region, the thickness of the 
transversely isotropic virtual material layer is assumed to be 1 
mm, and the equivalent density of the virtual material layer 
can be expressed by the mean density of the two contact 
surfaces [12]. 

III. EXPERIMENTAL VERIFICATION OF BOLTED STRUCTURE 

MODEL 

A.  Experimental specimens 

A block-shaped specimen was designed to validate the 
proposed model based on transversely isotropic virtual 
materials, as shown in Fig. 4. The experimental setup 
consisted of two steel plates (material type Q345 in China) 
which were connected by four M6 bolts. The thickness of the 
plates was 20 mm, and the contact area was 150 mm × 60 mm. 

The pretension of each bolt was controlled to a value of 3 
N·m using a torque wrench. The contact surfaces were 
machined by finish milling to a roughness of Ra3.2. 

To determine the parameters for the transversely isotropic 
virtual material layer, profiles of the contact surfaces were 
obtained using a Talysurf PGI 1230 roughness tester, and the 
fractal parameters D=1.569 and G=4.37e−9 m were obtained 
using the structure function method. 

 

Figure 4. Block-shaped specimen 

B. Simulations and experimental results 

 Simulation model 

3D models of the specimens were obtained using the 
software Inventor, and the properties of the two steel plates 
were set to the values listed in TABLE 1. Using the model 
proposed the parameters of the virtual material were 
determined by using Matlab to solve (11) and (24), and their 
value were Ex=4.97e8 Pa, Ez= 4.71e10 Pa, Gxz=4.79e8 Pa, 
υzx=0, υxy=0. 

TABLE I.  THE PROPERTIES OF  THE SPECIMEN 

Parameter 

Elatic 

modulus（

Pa） 

Poisson 

ratio 

Density（

kg/m3） 

Hardness

（Pa） 

Value 2.05e11 0.3 7850 5.00e8 

 

To verify the efficiency of the proposed method, finite 
element models for the block-shaped specimen were 
constructed using the software Workbench and the local 
coordinate system of the virtual material was set. The virtual 
material and steel plate were connected in the form of 
bonded, and the other boundaries were free. A hexahedral 
mesh was adopted for division, and the virtual material layer 
was locally refined. The element size of the FEA model, as 
shown in Fig. 5, was defined 5mm based on the mesh 
convergence analysis performed.   

Upper Steel Plate

Bottom Steel Plate

Virtual Material Layer
 

Figure 5. Finite element model of block-shaped specimen 

The rotation axis and properties of the transversely 
isotropic virtual material were defined by using the 
parameters of orthotropic elasticity. The mode shapes and 
natural frequencies of the experimental specimen were 
determined using modal analysis. 
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 Experimental test  

The modal test of the block-shaped specimen was 
established based on the experimental principle [18] in Fig. 6.   
The specimen was hung though some elastic ropes to simulate 
a free boundary. As shown in Fig. 7, acceleration transducers 
were placed on the test point on the steel plate to record the 
vibration excited by the PCB impact hammer.  The sensitivity 
of the impact hammer was 12.36 mV/N, and the sensitivity of 
the acceleration transducer along the X-, Y-, and Z-axis was 
102.2, 104, and 101.8 mV/g, respectively. The input of each 
channel was set as ICP mode. 

Figure 6. Diagram of modal test of bolted structure 

Figure 7. Experimental set-up of bolted structure 

The test model of the specimen was established in Lms 
software, and the vibration of the structure was determined by 
moving the impact hammer through all the measurement 
points. In addition, the frequency response of the specimen 
was recorded, as shown in Fig. 8. The natural frequency and 
mode shape of the bolted structure were also determined. 

Figure 8. Amplitude frequency response of specimen 

 Results and analysis  

The comparison results for the first six theoretical and 
experimental modes of the block-shaped specimen are shown 
in Fig. 9. The first six theoretical mode shapes were in 
excellent agreement with the experimental ones. 

Furthermore, the conventional virtual material model 
[17], for which the isotropic virtual material was used by 
determining the stiffness of the contact region equivalent to 
the parameters of virtual material, and the bonded method, in 
which the joint modelled by binding the two contact surfaces, 
were introduced to verify the accuracy of transversely 
isotropic virtual materials. The first six orders of natural 
frequencies of the block-shaped specimen, which were 
determined by modal experiment and simulated using the 
transversely isotropic virtual material method, the 
conventional virtual material model, and bolted method are 
listed in TABLE 3. For the transversely isotropic virtual 
material model, the relative errors of the first six orders of the 
corresponding natural frequencies of the transversely 
isotropic virtual material model compared with the 
experimental values were less than 5%. The relative errors of 
natural frequencies in the first three orders, the most 
important for engineering applications, were 3%, 0.8%, and 
−0.6%, respectively. Moreover, compared with the other 
method, the results of proposed method were much closer to 
the experimental results and with higher precision in general. 

(a) 1st mode shape 

(b) 2nd mode shape 

(c) 3rd mode shape 

(d) 4th mode shape 

(e) 5th mode shape 

(f) 6th mode shape 
Figure 9. Comparison of theoretical (right) and experimental  

mode shapes(left) 
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TABLE II.      COMPARISON OF NATURAL FREQUENCIES FOR 

THEORETICAL MODELS WITH EXPERIMENTAL RESULTS. 

Natural frequency (Hz) f1 f2 f3 

Experimental results 457.8 737.8 1227.1 

Transversely isotropic virtual 

materials model 
472.1 743.7 1219.2 

Error of transversely isotropic 

virtual materials model 
3.1% 0.8% -0.6% 

Traditional virtual material 

method 
491.7 834.2 1252.1 

Error of traditional virtual 

material method 
7.4% 13.1% 2.0% 

Bonded method 516.2 818.7 1243.9 

Error of bonded method 12.8% 11.0% 1.3% 

Natural frequency (Hz) f4 f5 f6 

Experimental results 1259.4 2358.3 2419.9 

Transversely isotropic virtual 

materials model 
1248.5 2417.0 2427.0 

Error of transversely isotropic 

virtual materials model 
0.9% 2.5% 0.3% 

Traditional virtual material 

method 
1259.1 2477.6 2686.3 

Error of traditional virtual 

material method 
0.02% 5.1% 11% 

Bonded method 1300.9 2591.2 2695.1 

Error of bonded method 3.3% 9.9% 11.4% 

 

IV. CONCLUSION 

An improved modeling method for bolted joint interfaces 

based on transversely isotropic virtual materials was 

proposed. The normal load of the contact interface and the 

elastic and shear moduli of a micro-contact were determined 

using Hertz contact theory and fractal geometry. 

 Based on the calculation method for composite materials, 

the elastic and shear moduli of the entire joint interface were 

obtained, and then the parameters of the transversely 

isotropic virtual material were obtained. 

An impact experiment was designed to verify the 

efficiency of the proposed method. The theoretical mode 

shapes were in excellent agreement with the experimental 

results, and the relative errors of the corresponding natural 

frequencies in the first three orders for the transversely 

isotropic virtual material model compared with the 

experimental values were no more than 5%. In general, the 

proposed model for bolted joint interfaces was much more 

precise than the conventional virtual material method. 
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